Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Braz J Med Biol Res ; 54(9): e10931, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34076143

RESUMO

Tobacco can induce reactive oxygen species (ROS) production extensively in cells, which is a major risk factor for oral leukoplakia (OLK) development. Peroxiredoxin 1 (Prx1) is a key antioxidant protein, upregulated in a variety of malignant tumors. We previously found that nicotine, the main ingredient of tobacco, promotes oral carcinogenesis via regulating Prx1. The aim of the present study was to screen and identify the Prx1 interacting proteins and investigate the mechanisms of nicotine on the development of OLK. Through liquid chromatography-tandem mass spectrometry combined with bioinformatics analysis, the candidate Prx1 interacting proteins of cofilin-1 (CFL1), tropomyosin alpha-3 chain (TPM3), and serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform (PPP2R1A) were screened in human dysplastic oral keratinocyte cells treated with nicotine. CFL1, TPM3, and PPP2R1A were highly expressed in human OLK tissues. The expression of CFL1 increased and the expression of PPP2R1A decreased in OLK of smokers compared to that in OLK of non-smokers. Nicotine upregulated CFL1 and downregulated PPP2R1A in 4-nitro-quinoline-1-oxide (4NQO)-induced OLK tissues in mice in part dependent on Prx1. Furthermore, the in-situ interaction of CFL1, TPM3, and PPP2R1A with Prx1 were validated in human OLK tissues. Our results suggested that tobacco might promote the development of OLK via regulating Prx1 and its interacting proteins CFL1 and PPP2R1A.


Assuntos
Leucoplasia Oral , Nicotina , Peroxirredoxinas , Animais , Carcinogênese , Proteínas de Transporte , Proteínas de Homeodomínio , Leucoplasia Oral/induzido quimicamente , Camundongos , Peroxirredoxinas/metabolismo
2.
Braz. j. med. biol. res ; 54(9): e10931, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1249340

RESUMO

Tobacco can induce reactive oxygen species (ROS) production extensively in cells, which is a major risk factor for oral leukoplakia (OLK) development. Peroxiredoxin 1 (Prx1) is a key antioxidant protein, upregulated in a variety of malignant tumors. We previously found that nicotine, the main ingredient of tobacco, promotes oral carcinogenesis via regulating Prx1. The aim of the present study was to screen and identify the Prx1 interacting proteins and investigate the mechanisms of nicotine on the development of OLK. Through liquid chromatography-tandem mass spectrometry combined with bioinformatics analysis, the candidate Prx1 interacting proteins of cofilin-1 (CFL1), tropomyosin alpha-3 chain (TPM3), and serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform (PPP2R1A) were screened in human dysplastic oral keratinocyte cells treated with nicotine. CFL1, TPM3, and PPP2R1A were highly expressed in human OLK tissues. The expression of CFL1 increased and the expression of PPP2R1A decreased in OLK of smokers compared to that in OLK of non-smokers. Nicotine upregulated CFL1 and downregulated PPP2R1A in 4-nitro-quinoline-1-oxide (4NQO)-induced OLK tissues in mice in part dependent on Prx1. Furthermore, the in-situ interaction of CFL1, TPM3, and PPP2R1A with Prx1 were validated in human OLK tissues. Our results suggested that tobacco might promote the development of OLK via regulating Prx1 and its interacting proteins CFL1 and PPP2R1A.


Assuntos
Animais , Camundongos , Leucoplasia Oral/induzido quimicamente , Peroxirredoxinas/metabolismo , Nicotina , Proteínas de Transporte , Proteínas de Homeodomínio , Carcinogênese
3.
Cancer Biol Ther ; 21(6): 541-548, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32186431

RESUMO

Objectives: Lymphatic metastasis is the main cause of low patient survival in cases of oral squamous cell carcinoma (OSCC). Several animal models have been established to uncover the mechanism that regulates lymph node metastasis of OSCC cells. Unfortunately, these models often take a long time to establish. The prolonged tumor burden can lead to animal cachexia, which may ultimately affect the experimental outcome. To overcome the disadvantages of these models, we established an orthotopic metastatic animal model of OSCC that showed quick lymph node metastasis potential.Results: DiR dye-labeled CAL27 cells were injected into tongue tissues of BALB/c nude mice, and the cells metastasized to lymph nodes on day 3. Metastasis was monitored using an in vivo imaging system and confirmed by histological observation. Using this model, we investigated the role of hyaluronic acid (HA) on the cervical metastasis of OSCC cells. Surprisingly, we found that the presence of HA significantly reduced the incidence of metastasis to cervical lymph nodes compared with the control group. Further analysis revealed that the presence of exogenous HA promoted mesenchymal-epithelial transition (MET) in primary tumors while reducing the metastatic potential of OSCC.Conclusion: Our findings confirmed the establishment of a fast and reliable lymphatic metastatic mouse model of OSCC that can be used for investigating metastatic mechanisms and analyzing various antimetastasis strategies. An equally important discovery is the antimetastatic property of HA, which could provide a potential therapeutic strategy for OSCC.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Modelos Animais de Doenças , Ácido Hialurônico/farmacologia , Neoplasias Bucais/tratamento farmacológico , Viscossuplementos/farmacologia , Animais , Apoptose , Carcinoma de Células Escamosas/secundário , Proliferação de Células , Feminino , Humanos , Metástase Linfática , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Bucais/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Arch Oral Biol ; 108: 104537, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31525533

RESUMO

OBJECTIVE: Tobacco smoking is one of the main risk factors for oral squamous cell carcinoma (OSCC) and can induce generation of reactive oxygen species (ROS). In our previous studies, we demonstrated that nicotine, the major ingredient in tobacco, can upregulate an important antioxidant enzyme Peroxiredoxin 1 (Prx1), in oral leukoplakia (OLK), an oral precancerous lesion. The underlying regulatory mechanisms, however, remain unclear. This study aims to identify regulatory mechanisms of nicotine and identify Prx1 interacting proteins in nicotine-associated OLK. DESIGN: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) combined with bioinformatics analysis was conducted to profile Prx1 binding proteins in human dysplastic oral keratinocyte (DOK) cells. Candidate interaction proteins were further verified using Co-immunoprecipitation (Co-IP), Western blot or Duolink assay in 4-nitro-quinoline-1-oxide (4NQO)-induced OLK in mice and human OLK tissues. RESULTS: We identified Thioredoxin (Trx), Nucleolar GTP-binding protein 1 (GTPBP4), GTP-binding protein Di-Ras2 (DIRAS2) and apoptosis signal-regulating kinase 1 (ASK1) as key Prx1 interacting proteins regulated by nicotine. Our data showed that nicotine upregulated Trx, GTPBP4, DIRAS2, and downregulated ASK1 in 4NQO-induced OLK in mice, at least in part dependent on Prx1. The modulations of Trx, GTPBP4, DIRAS2 and ASK1 by nicotine were also found in OLK smokers compared to OLK non-smokers. The in-situ interaction of Trx, GTPBP4, DIRAS2 and ASK1 with Prx1 were validated in human OLK tissues. CONCLUSION: Nicotine may promote OLK development via regulating Prx1 binding proteins Trx, GTPBP4, DIRAS2 and ASK1. The results of this study will help to develop therapeutic approaches for OLK in humans targeting Prx1 interacting protein network.


Assuntos
Carcinoma de Células Escamosas , Proteínas de Homeodomínio , MAP Quinase Quinase Quinase 5 , Neoplasias Bucais , Nicotina , Proteínas rho de Ligação ao GTP , Animais , Carcinoma de Células Escamosas/metabolismo , Cromatografia Líquida , Proteínas de Ligação ao GTP , Proteínas de Homeodomínio/metabolismo , Humanos , Leucoplasia Oral , MAP Quinase Quinase Quinase 5/metabolismo , Camundongos , Neoplasias Bucais/metabolismo , Nicotina/farmacologia , Proteínas Nucleares , Peroxirredoxinas , Proteoma , Fumar/efeitos adversos , Espectrometria de Massas em Tandem , Proteínas rho de Ligação ao GTP/metabolismo
5.
Onco Targets Ther ; 12: 3327-3338, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31118684

RESUMO

BACKGROUND: Tobacco is a major risk factor for oral squamous cell carcinoma (OSCC). However, the role of nicotine in OSCC is not completely understood. MATERIALS AND METHODS: To analyze the mechanisms of nicotine-induced cervical metastasis, we investigated whether nicotine induced invasion, migration, and epithelial-mesenchymal transition (EMT) via regulating peroxiredoxin 1 (Prx1) in CAL 27 cells. In addition, we established a mouse model to confirm the roles of nicotine in regulating Ets1/Prx1/EMT signaling in OSCC metastasis. RESULTS: We showed that nicotine induced CAL 27 cell invasion, migration, EMT, and Prx1 and Ets1 expression. Prx1 knockdown inhibited cell invasion, migration, and EMT. Ets1 silencing downregulated Prx1 expression and EMT. Prx1 and Ets1 were shown to interact in CAL 27 cells treated with nicotine, and nicotine could significantly upregulate the binding of the transcription factor Ets1 to the Prx1 gene promoter region. Additionally, an in vivo study showed that nicotine induced tumor metastasis and EMT. Prx1 knockdown inhibited cervical metastasis rates and EMT progression. No significant differences in metastasis rates and EMT-related marker expression levels were observed between vehicle- and nicotine-treated mice. CONCLUSION: The results indicate that nicotine promotes cervical lymph node metastasis through regulating Ets1/Prx1/EMT signaling during OSCC pathogenesis; consequently, Prx1 may represent a potential target for the prevention and treatment of OSCC.

6.
Front Pharmacol ; 8: 870, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29218012

RESUMO

Objective: To explore whether Rhaponticum uniflorum (R. uniflorum) had anti-tumor effects in oral cancer and investigate the molecular mechanisms involved in these anti-tumor effects. Methods: Chemical compositions of R. uniflorum ethyl acetate (RUEA) extracts were detected by ultra-performance liquid chromatography-Q/time-of-flight mass spectrometry (UPLC-Q/TOF-MS), followed by pharmacology-based network prediction analysis. The effects of RUEA extracts on proliferation, apoptosis, migration, and invasion ability of human oral squamous cell carcinoma (OSCC) cell line SCC15 were evaluated by CCK8 assay, Annexin V- fluorescein isothiocyanate/propidium iodide staining, wound healing assay, and Matrigel invasion assay, respectively. The mRNA and protein expression of peroxiredoxin1 (Prx1), the epithelial-to-mesenchymal transition (EMT) marker E-cadherin, vimentin, and Snail were determined by quantitative real-time reverse transcription polymerase chain reaction and western blotting. A mouse xenograft model of SCC15 cells was established to further evaluate the effect of RUEA extracts in vivo. Immunohistochemical assessment of Ki67 and terminal deoxynucleotidyl transferase dUTP nick end labeling staining of apoptotic cells were performed on the tumor tissues to assess the effects of RUEA extracts on proliferation and apoptosis. Results: Fourteen compounds were identified from RUEA extracts by UPLC-Q/TOF-MS. The pharmacology-based network prediction analysis showed that Prx1 could be a potential binder of RUEA extracts. In SCC15 cells, RUEA extracts inhibited cell viability, induced apoptosis, and suppressed cell invasion and migration in a concentration-dependent manner. After treatment with RUEA extracts, the mRNA and protein expression of E-cadherin increased, whereas those of Prx1, vimentin, and Snail decreased. RUEA extracts also affected the EMT program and suppressed cell invasion and migration in Prx1 knockdown SCC15 cells. In an OSCC mouse xenograft model, RUEA extracts (25 and 250 mg/kg) significantly inhibited the growth of tumors. Compared with the control group, Ki67 expression was reduced and apoptosis rates were elevated in the transplanted tumors treated with RUEA extracts. RUEA extracts increased the expression of E-cadherin and decreased the expression of Prx1, vimentin, and Snail in vivo. Conclusion: RUEA extracts inhibited tumor growth and invasion by reducing Prx1 expression and suppressing the EMT process in OSCC. RUEA extracts may be a potential candidate for OSCC treatment.

7.
Oncotarget ; 8(43): 75065-75075, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-29088845

RESUMO

Nicotine, a tumor promoter in tobacco, can increase Peroxiredoxin (Prx1) and nicotinic acetylcholine receptors (nAChRs) in oral squamous cell carcinoma (OSCC). In the present study, we investigate the effects of nicotine in oral precancerous lesions focusing on apoptosis and nAChR/Prx1 signaling. We detected expression of Prx1, α3nAChR, α7nAChR, phosphorylation of mitogen-activated protein kinases (MAPK) and apoptosis in dysplastic oral keratinocyte (DOK) cells as well as in 4-nitroquinoline 1-oxide (4NQO) or 4NQO + nicotine - induced oral precancerous lesions in Prx1 wild-type (Prx1+/+) and Prx1 knockdown (Prx1+/-) mice. In DOK cells, Prx1 knockdown and blocking α7nAChR activated apoptosis, and nicotine increased the expression of Prx1, α3nAChR and α7nAChR, and inhibited MAPK activation. Moreover, nicotine suppressed apoptosis depending on Prx1 and α7nAChR in DOK cells. In animal bioassay, nicotine and Prx1 promoted growth of 4NQO-induced precancerous lesions in mouse tongue. 4NQO plus nicotine suppressed MAPK activation in Prx1 wild-type mice but not in Prx1 knockdown mice. Our data demonstrate that nicotine inhibits cell apoptosis and promotes the growth of oral precancerous lesions via regulating α7nAChR/Prx1 during carcinogenesis of OSCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...